Multivariate Procedure for Variable Selection and Classification of High Dimensional Heterogeneous Data

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Variable Selection for High Dimensional Multivariate Outcomes.

We consider variable selection for high-dimensional multivariate regression using penalized likelihoods when the number of outcomes and the number of covariates might be large. To account for within-subject correlation, we consider variable selection when a working precision matrix is used and when the precision matrix is jointly estimated using a two-stage procedure. We show that under suitabl...

متن کامل

High-Dimensional Variable Selection for Survival Data

The minimal depth of a maximal subtree is a dimensionless order statistic measuring the predictiveness of a variable in a survival tree. We derive the distribution of the minimal depth and use it for high-dimensional variable selection using random survival forests. In big p and small n problems (where p is the dimension and n is the sample size), the distribution of the minimal depth reveals a...

متن کامل

A Multivariate Framework for Variable Selection and Identification of Biomarkers in High-Dimensional Omics Data

In this thesis, we address the identification of biomarkers in high-dimensional omics data. The identification of valid biomarkers is especially relevant for personalized medicine that depends on accurate prediction rules. Moreover, biomarkers elucidate the provenance of disease, or molecular changes related to disease. From a statistical point of view the identification of biomarkers is best c...

متن کامل

Variable selection for multivariate failure time data.

In this paper, we proposed a penalised pseudo-partial likelihood method for variable selection with multivariate failure time data with a growing number of regression coefficients. Under certain regularity conditions, we show the consistency and asymptotic normality of the penalised likelihood estimators. We further demonstrate that, for certain penalty functions with proper choices of regulari...

متن کامل

Variable Selection for Multivariate Survival data

It is assumed for the Cox’s proportional hazards model that the survival times of subjects are independent. This assumption might be violated in some situations, in which the collected data are correlated. The well-known Cox model is not valid in this situation because independence assumption among individuals is violated. For this purpose Cox’s proportional hazard model is extent to the analys...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Communications for Statistical Applications and Methods

سال: 2015

ISSN: 2383-4757

DOI: 10.5351/csam.2015.22.6.575